CNR-ITSC / IFOMIS Workshop on Ontologies in Medicine Rome, October 8-9, 2003

From biomedical language to biomedical knowledge

Uncovering relations expressed through reification and other linguistic phenomena

Olivier Bodenreider

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA

Acknowledgments

- ◆ Songmao Zhang
- ◆ Anita Burgun
- **◆** Tom Rindflesch

Anatomy examples

- ◆ Foundational Model of Anatomy (C. Rosse & al.)
- ♦ GALEN (A. Rector & al.)

Outline

- ◆ Concepts and semantic relations
- ◆ Lexical phenomena representing semantic relations
- Applications
 - Building ontologies
 - Aligning ontologies
 - Validating ontologies

Introduction

Concepts and semantic relations

Concepts and semantic relations

- ◆ Knowledge representation paradigm
 - Concepts represent categories
 - Bacteria
 - Addison's disease
 - Semantic relations represent assertions
 - Propanolol *treats* Arrythmia
 - Adrenal gland produces Cortisol

Concepts vs. semantic relations

- Concept names may also embed
 - Assertions
 - Adrenal gland \leftrightarrow Adrenal gland is a kind of Gland
 - Predicates
 - Anti-arrythmia agent ↔ *treats* Arrythmia
 - Subdivision of heart \leftrightarrow *part of* Heart

From concept names to relations

- Semantic relations can be extracted from a combination of
 - Predicates embedded in concept names
 - Existing relations
- Examples of semantic relations extracted
 - Propanolol *treats* Arrythmia
 - Propanolol *isa* Anti-arrythmia agent
 - Anti-arrythmia agent → treats Arrythmia
 - Cardiac chamber *part of* Heart
 - Cardiac chamber isa Subdivision of heart
 - Subdivision of heart \leftrightarrow *part of* Heart

Issues with explicit vs. implicit relations

◆ Redundancy

- Some semantic relations may be represented both explicitly and implicitly
- Maintenance issues
- Consistency
 - Implicit semantic relations may not always be represented explicitly
 - Issues:
 - In one ontology: Inconsistent representation
 - Across ontologies: Alignment issues

Linguistic phenomena representing semantic relations

General framework

◆ Lexical semantics

[Cruse, 1986]

- Knowledge acquisition from textual sources
 - General relations from general corpora
 - Hyponymy (*isa*), meronymy (*part of*) (e.g., from machine-readable dictionaries) [Dolan & al, 1993]
 - Specialized relations from the biomedical literature
 - e.g., *binds* from MEDLINE

[Rindflesch & al, 2000]

Various relations from terminologies [Ausser

[Aussenac-Gilles & al., 1995]

Nominal modification

- ◆ [mod(adj|noun)+, head(noun)]_{NP}
 - → Concept_{NP} isa Concept_{Head}
- ◆ Adjective-Noun
 - Acute meningitis
 - → Acute meningitis *isa* Meningitis
- ♦ Noun-Noun
 - Lung cancer
 - → Lung cancer *isa* Cancer
- Domain independent

Nominal modification

- ◆ [mod(adj|noun)+, head(noun)]_{NP}
 - \rightarrow Concept_{Mod} rel Concept_{Head}
- ◆ Mod-Head
 - Lung cancer
 - → Lung *location of* Cancer
 - Viral infection
 - → Virus *causes* Infection
- Domain dependent

Reification

- **♦** *Part of*
 - Component of X: Finger *isa* Component of hand

 ← Finger *part of* Hand
 - Subdivision of X: Cardiac chamber *isa* Subdivision of heart

 ← Cardiac chamber *part of* Heart
 - Organ component of X: Cardiac sphincter *isa* Organ component of stomach ← Cardiac sphincter *part of* Stomach
- **♦** *Branch of*
 - Branch of X: Sural nerve isa Branch of tibial nerve

 ⇔ Sural nerve branch of Tibial nerve
- ◆ Other reified relations (function)
 - Iron transporter \leftrightarrow carries Iron (e.g., Ferritin)

[Burgun & al, 2002]

Angiotensin-Converting Enzyme (ACE) inhibitor

 ← inhibits ACE (e.g., Captopril)

Prepositional attachment

- ◆ [head(noun), [prep(of), head(noun)]_{PP}]_{NP}
 - \rightarrow Concept_{NP} part of Concept_{PP}
 - Muscle of pelvis \rightarrow Muscle of pelvis *part of* pelvis
 - Nail of third toe \rightarrow Nail of third toe part of third toe
 - Base of₁ phalanx of₂ middle finger
 - \rightarrow B of P of MF part of P of MF (of_1)
 - \rightarrow B of P of MF *part of* MF (of₂)
- Other prepositions
 - Urine test for glucose
 ← Urine test analyzes Glucose
- Domain dependent

Other phenomena

- ◆ Lexico-syntactic patterns for hyponymic relations
 - Appositives
 - Captopril, an ACE inhibitor, is used for
 - Other patterns

[Hearst & al, 1992]

- Such ACE inhibitors as captopril are used for ...
- ACE inhibitors including captopril and enalapril are ...
- ACE inhibitors, **especially** captopril, are ...
- **.** [...]
- Relatively rare in concept names

Limitations (Anatomy)

[Zhang & al., 2003]

- ◆ Mostly unambiguous within a given subdomain
- Exceptions
 - Carotid body → Carotid body isa Body
 - Groove for arch of aorta
 - Groove for arch of aorta *part of* aorta

Applications

Applications

- ◆ Building ontologies
 - Acquire relations
 - Extend existing ontologies
- Aligning ontologies
 - Make knowledge explicit in both ontologies
- Validating ontologies
 - Compare existing relations to acquired relations
 - Compare existing concept names to potential concept names

Application 1 Building ontologies

[Bodenreider & al, 2001]

- Acquire terms from a corpus
 - MEDLINE
- ◆ Relate these terms to existing terms in UMLS
 - Adjectival modification $(T_n = adj + T_o)$
- ◆ Semantic relation: Hyponymy

Principles

A phrase from MEDLINE becomes a candidate term in the Metathesaurus if:

- ◆ <u>Condition 1</u>: A demodified term created from this phrase is found in the Metathesaurus and
- ◆ <u>Condition 2</u>: The modifiers removed from the MEDLINE phrase also modify existing terms from the Metathesaurus, for a given semantic category

Example

pancreatic bronchogenic cyst

= pancreatic + bronchogenic cyst

Results Quantitative

- ◆ 3 M "simple" MEDLINE NPs
- ◆ 21,000 already in the Metathesaurus (eliminated)
- ◆ 1.3 M (adj+, noun*, head)
 NPs
- ◆ 1.6 M demodified terms
- ◆ 125,464 candidate terms

Results Evaluation

- **♦** Limited evaluation
- ◆ 1000 candidate terms, randomly selected
- ◆ 1000 pairs (candidate term, Metathesaurus concept)
- Manual review
- ◆ Relevance of the association
 - 83% relevant
 - 3% more or less relevant
 severe ocular inflammatory disease
 - 14% not relevant

appropriate aid AID - Artificial insemination by donor

Limitations

- ◆ Limited review
- ◆ Causes for non-relevant associations
 - Acronyms

```
appropriate aid AID - Artificial insemination by donor
```

Inaccurate POS tagging

```
controlling stress stress
```

Inaccurate mapping

```
urinary protein protein [measurement]
```


Application 2 Aligning ontologies

◆ 2 ontologies of anatomy

[Zhang & al, 2003]

- Foundational Model of Anatomy
- GALEN
- ◆ Identify equivalent concepts
 - Lexical similarity
 - Structural similarity (hierarchical relations)
- ◆ Impaired by equivalent relations represented differently in the 2 ontologies (implicit/explicit)
- ◆ Knowledge augmentation

Augmentation methods

- ♦ isa
 - Nominal modification
- part of
 - Prepositional attachment (of)
 - Reification (subdivision of, component of, ...)
- **♦** branch of
 - Reification (branch of)

Results

Evaluation

Application 3 Validating ontologies

 Relations embedded in concept names are expected to be represented explicitly

◆ Relations generated by knowledge augmentation are expected to be consistent with explicit relations (within/across ontologies)

Explicit vs. implicit relations

Inconsistencies revealed by augmentation

Within ontologies

[Zhang & al, 2003]

- Internal spermatic fascia *isa* Organ component of internal spermatic fascia
- Conflict
 - Explicit: Apex of urinary bladder *has part* Urinary bladder
 - Augmented: Apex of urinary bladder *part of* Urinary bladder (from Apex of urinary bladder *isa* Subdivision of UB)
- Across ontologies
 - FMA: Shoulder *part of* Pectoral girdle
 - GALEN: Shoulder *has part* Pectoral girdle

Other issues revealed by augmentation

 Consistency of children in medical terminologies [Bodenreider & al, 2002]

- ◆ Based on adjectival modification
- Compare
 - Existing relations to expected relations
 - Existing concept names to potential concept names

Methods Co-occurrence of modifiers

primary lacrymal atrophy secondary lacrymal atrophy primary amyloidosis secondary amyloidosis primarylacrymal atrophysecondarylacrymal atrophyprimaryamyloidosissecondaryamyloidosis

 \rightarrow freq(primary, secondary) = 2

(primary, secondary)

lacrymal atrophy amyloidosis

Method Transforming terms

primary ovarian failure primary amyloidosis primary hyperprolactinemia secondary ovarian failure secondary amyloidosis secondary hyperprolactinemia

Method Mapping to UMLS / SNOMED

primary ovarian failure
secondary ovarian failure
primary amyloidosis
secondary amyloidosis
primary hyperprolactinemia
secondary hyperprolactinemia

UMLS (SNOMED)

Method Analyzing the relationships

primary ovarian failure

failure

secondary ovarian failure

failure

Issue 1 Missing referent

- We artificially created terms by associating modifiers with context
- Medical knowledge

Issue 2 Missing concept

- ◆ Knowledge representation, knowledge acquisition
- Distinction among concepts
- ◆ Typical form

Issue 3 Missing symbol

- ◆ Lexical knowledge
- Synonymy

Conclusions

Conclusion

- ◆ Use of lexical knowledge to help
 - Build ontologies
 - *Align* ontologies
 - Validate ontologies and terminologies
- ◆ These methods help automate these processes
- Domain knowledge is required

Medical Ontology Research

Contact: olivier@nlm.nih.gov

Web: etbsun2.nlm.nih.gov:8000

Olivier Bodenreider

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA